Title:

APC/C Ubiquitin Ligase: Coupling Cellular Differentiation to G1/G0 Phase

in Multicellular Systems

Author: Yuu Kimata1,2

Affiliation: School of Life Science and Technology, ShanghaiTech University, Shanghai, China;
 University of Cambridge, Cambridge, United Kingdom

Correspondence: ykimata@shanghaitech.edu.cn

Key words: APC/C, development, differentiation, cell cycle, G1/G0, ubiquitination
Abstract

The anaphase promoting complex/cyclosome (APC/C) is an evolutionarily conserved ubiquitin ligase that controls cell cycle progression through spatiotemporally regulated proteolysis. Although recent studies revealed its postmitotic function, our knowledge of the role of APC/C beyond cell cycle regulation in the biology of multicellular organisms is far from complete. Here I review recent advances in the function of APC/C in animal development, specifically focusing on its emerging role in regulating cell differentiation. I describe how APC/C regulates distinct processes during the course of differentiation by deploying diverse molecular machineries in a wide variety of developmental contexts. Also, I discuss the significance and clinical relevance of the unique capacity of APC/C and other cell cycle regulators to couple distinct cellular processes with cell proliferation control.
Introduction

The cell cycle is a series of events through which a cell divides into two cells (Figure 1A). In multicellular organisms, proper cell cycle regulation is critical not only for growth but also for development and homeostasis. The last few decades of research, which largely relied upon unicellular organisms and in vitro cell culture, have unveiled conserved molecular machineries that control major processes of the cell cycle. However, many questions on cell cycle regulation in vivo in metazoan organisms remain unsolved, including how cell cycle regulators are controlled at the tissue, organ and organism levels, and how the cell cycle is orchestrated with other cellular events that are important for development.

Cell cycle progression is ultimately dictated by a set of conserved proteins commonly called ‘cell cycle regulators’. The most central among these are cyclin-dependent kinases (CDKs, see Glossary), which regulate the cell cycle through protein phosphorylation. In addition, Cullin-RING ubiquitin ligases (CRLs) regulate protein abundance in a cell through the ubiquitin-proteasome pathway (UPP). Through the irreversible process of proteolysis, CRLs ensure the unidirectionality of cell cycle progression.

APC/C is a major CRL involved in cell cycle regulation, characterised by its exceptionally large size and intricate architecture composed of 16 distinct proteins. Because of its homology across species, APC/C was assumed to be specialised in cell cycle regulation in multicellular organisms. However, subsequent studies using metazoan models revealed its unanticipated postmitotic roles beyond cell cycle regulation. The first hint of involvement in postmitotic processes was high expression of the APC/C co-activator CDH1 (also known as Fizzy-related or Fzr1) in mammalian neurons. Subsequent analyses established the critical role of APC/C in the terminal differentiation of neurons and ultimately in the function of the nervous system. Despite this discovery, whether APC/C is also involved in earlier stages of cell differentiation or if it operates in a wider variety of cell types remains unclear. In this review, I outline novel postmitotic functions of APC/C in cell differentiation in various developmental contexts and highlight multiple context-dependent cellular mechanisms whereby APC/C directly impacts cell differentiation and cell type-specific cell behaviours.
Regulating G1/G0 length

APC/C regulates multiple events during the cell cycle, acting as both an engine and a brake\(^4,9\). Two structurally homologous accessory subunits, CDC20 (also called Fizzy) and CDH1, commonly referred to as ‘APC/C coactivators’, mediate substrate recognition and stimulate the ubiquitin ligase activity of APC/C\(^{10,11}\). CDC20 binds and activates APC/C in M phase to trigger chromatid separation and mitotic exit through degradation of Securin and mitotic cyclins, respectively. After CDK1 inactivation, CDH1 gets dephosphorylated and binds APC/C to degrade CDC20. APC/C\(^{\text{CDH1}}\) retains cells in the following G1 phase or allows them to enter G0 (Figure 1), making it a key regulator of G1/G0 progression\(^9\). In yeast and human, CDH1 inactivation shortens G1 phase and thus premature entry into S phase, which causes DNA damage\(^{12,13}\). CDH1 is also required for cells to enter G0 when they are deprived of nutrients or mitogens or exposed to anti-mitotic signals\(^{13,14}\) (Figure 1).

Studies in multicellular models also underpin the critical role of APC/C\(^{\text{CDH1}}\) in G1/G0 progression \textit{in vivo}. In \textit{Drosophila}, CDH1 is required for G1/G0 arrest of embryonic epidermal cells and photoreceptor progenitor cells before differentiation\(^{15,16}\). In mice, conditional knockout of the APC/C subunit, APC2, causes spontaneous proliferation of quiescent hepatocytes, resulting in acute liver failure\(^{17}\). However, interestingly, in these animals, many cells remain quiescent or stop dividing after only a few subsequent divisions, indicating that redundant or cooperative mechanisms are present to ensure robust control of proliferation \textit{in vivo}. Human CDH1 has been shown to bind Retinoblastoma protein (pRb), another important G1/G0 regulator and tumour suppressor\(^{18}\), suggesting possible cooperation between APC/C\(^{\text{CDH1}}\) and pRb in G1/G0 regulation \textit{in vivo}\(^9\).

Notably, a recent single-cell study in human cell culture identified an additional role for APC/C\(^{\text{CDH1}}\) in the exit from G0\(^{19}\); after the \textbf{Restriction point} (R-point)\(^{20}\), cells are able to return to G0 phase upon exposure to various cellular stress, such as DNA damage\(^{19}\). In contrast, the re-entry to G0 phase is not observed when APC/C\(^{\text{CDH1}}\) is irreversibly inactivated by its inhibitor Emi1 subsequent to the R-point\(^{19}\). Thus, the full inactivation of APC/C\(^{\text{CDH1}}\) defines the ‘point of no return’ before S phase, pointing to a role for APC/C\(^{\text{CDH1}}\) as the final gatekeeper for mammalian cells to exit from G0 phase. However, the significance of this new ‘time point’ in the cell cycle with respect to the R-point, and how they control cell proliferation and tissue growth across cell types, remains to be addressed.
As differentiation progresses, cells generally slow down the cell cycle, typically by lengthening G1 phase. Indeed, in the developing mammalian cerebral cortex, the G1 phase of neural progenitors is progressively elongated upon differentiation into intermediate progenitors and then further as they continue differentiation to neurons21. Further studies suggest a role for APC/C in regulating this process. In the mouse brain, shortening G1 by over-expressing the G1-specific CDK, CDK4-Cyclin D, inhibits differentiation of the progenitors, whereas elongating G1 by CDK4 depletion promotes their differentiation22. This finding has led to ‘the cell cycle length hypothesis’ for mammalian neurogenesis, in which a longer G1 phase provides sufficient time for cell fate determinants to induce neural differentiation in neural progenitors21.

In addition to CDK4-Cyclin D, APC/CCDH1 also appears to be responsible for G1 progression in mouse neural progenitors as neural progenitor-specific CDH1 knockout cells prevent G1 elongation in the progenitor pool and inhibits the generation of mature neurons in developing mouse brains. This inhibition results in severe reduction of the overall brain size, reminiscent of microcephaly23,24. Similarly, in an in vitro neurogenesis model with primary cortical culture, CDH1 knockout inhibits both G1 elongation and the expression of neural markers in neuronal progenitors, whereas expression of the non-phosphorylatable form of CDH1 (refractory to CDK1-dependent inhibitory phosphorylation) induces G1 elongation and accelerates neuronal differentiation23. These data support a model that APC/CCDH1 induces the differentiation of neural progenitors by extending G1 phase. However, CDH1 knockout also causes the accumulation of DNA damage in progenitors because of premature entry into S phase. This leads to p53-mediated apoptosis of progenitor cells, which results in a reduction in the number of neurons23,24. Thus, the role of APC/CCDH1 in the differentiation of neural progenitors is still unclear.

However, despite both APC/CCDH1 and CDK4-Cyclin D affecting G1 length and differentiation of neural progenitor differentiation, they appear to regulate the process differently. A detailed cell cycle profiling in the mouse neural progenitors showed that the self-renewing population of the progenitors experience a longer S phase than the differentiating population25, suggesting that S phase duration may also influence neural differentiation, which might be abrogated by CDH1 depletion, but not by CDK4-Cyclin D. Notably, previous studies in Drosophila retinogenesis showed that the loss of G1 arrest does not inhibit the
differentiation of retinal progenitor cells into photoreceptor neurons, indicating that G1
elongation is not a universal requirement for neural differentiation. CDK4-Cyclin D has
been reported to have various cell cycle-independent functions. Thus, it is possible that
CDK4-Cyclin D may induce neural differentiation independent of the cell cycle, which may
explain the different effects of CDK4-Cyclin D expression and CDH1 depletion. As discussed
later, APC/C also impacts cell differentiation through cell cycle-independent mechanisms. In
the case of mouse neural progenitors, APC/C\textsubscript{CDH1} targets several proteins that are highly
expressed in the progenitors, such as KLF4, MCPH1, Radmis and CK1\textdelta.28–31 (Table 1). Defining
the roles of their degradation may clarify the role of APC/C\textsubscript{CDH1} in neural differentiation.

Modulating cellular responses to developmental signalling

Transcriptional regulation of gene expression is central to cell fate specification, cellular
differentiation, and tissue-specific functions. APC/C influences cellular differentiation by
directly targeting various cell type-specific transcription factors (TFs) and their regulators for
degradation.32,33 (Table 1). For example, in an in vitro myogenesis system using mouse C2
cells, APC/C\textsubscript{CDH1}-dependent degradation of a basic helix-loop-helix (bHLH) type TF, Myf5,
triggers myogenic fusion during differentiation into multinucleated muscle fibres.34 In
mammalian neurons, APC/C targets the neurogenic bHLH protein, NeuroD2, as well as
inhibitors of bHLH TFs, Inhibitor of DNA binding protein 1 and 2 (Id1 and Id2), to regulate
neuronal morphology and activity.35–37

Other major mechanisms that cooperate with TFs in gene regulation are extracellular
signalling pathways. By responding to external signals, these pathways transduce
intercellular and intracellular signalling cascades, which typically culminate in transcriptional
changes within signal-receiving cells. The first evidence for crosstalk between APC/C and
signalling pathways was the identification of the SnoN transcriptional repressor as an APC/C
substrate.38,39 SnoN inhibits the ability of receptor-regulated Smad proteins to activate
transcription in response to TGF-\textbeta family ligands.40 CDH1 directly binds SnoN and Smad3 to
induce APC/C-dependent degradation of SnoN, thereby promoting TGF-\textbeta-induced
transcription in human cells (Figure 2A). Subsequent studies in vertebrate and
invertebrate models also support the role of APC/C\textsubscript{CDH1} in SnoN degradation in vivo.32,33,41,42
However, the cellular levels of SnoN are regulated by multiple transcriptional and posttranscriptional mechanisms, in addition to APC/C-mediated proteolysis\(^4\). Thus, to what extent APC/C modulates TGF-β signalling pathways remains unclear.

Along with TGF-β signalling, the Wnt signalling pathway is another highly conserved signalling pathway that plays a central role in the regulation of the development and physiology of metazoans. Recently, two genetic screens in *Drosophila* have identified a novel function of APC/C in regulating Wnt signalling\(^44,45\) (Figure 2B). In the developing *Drosophila* eye primordium (the eye imaginal disc), Wnt signalling inhibits the specification of undifferentiated progenitors into retinal fate including photoreceptor neurons\(^46,47\). Partial APC/C inactivation in the progenitors allows their proliferation but blocks their differentiation into photoreceptor neurons, resulting in a severe reduction of adult retinas or the formation of antenna-like tissues in the adult eye, indicative of a failure in cell fate determination\(^44\). These defects are accompanied by abnormal activation of Wnt-dependent transcription in the progenitors, suggesting that APC/C normally suppresses Wnt signalling responses in these progenitors to allow their specification into retinal fate (Figure 2B).

Furthermore, APC/C\(^{CDH1}\) inactivation late in development in the postmitotic eye and wing epithelia causes mis-orientation of ommatidia and wing hairs in adult flies. As APC/C\(^{CDH1}\) inactivation misregulates the non-canonical Wnt/PCP pathway\(^45\), **planar cell polarity** (PCP) is not established in the epithelia, resulting in the above phenotype. These results suggest that APC/C modulates both canonical and non-canonical Wnt pathways to promote cell differentiation and tissue development (Figure 2B).

Intriguingly, this regulation of the Wnt pathways is mediated by the degradation of a conserved kinase, NIMA-related kinase 2 (Nek2)\(^44,45\), which is an established regulator of the centrosome and is also known to regulate various cell cycle processes\(^48\). In *Drosophila*, Nek2 was recently identified as a positive modulator of the canonical Wnt pathway, which can bind and phosphorylate Dishevelled (Dsh), a component shared between the canonical Wnt and Wnt/PCP pathways\(^49\). In eye imaginal discs, prior to the specification of photoreceptors, all retinal progenitor cells become synchronously arrested in G1 phase, which requires APC/C\(^{CDH1}\) activity\(^50\). Nek2 is degraded in the cytoplasm in G1 phase through APC/C\(^{CDH1}\)-mediated proteolysis, resulting in reduced cellular responsiveness to Wnt signalling in the G1-arrested cell population\(^44\). Based on these results, it has been proposed that APC/C\(^{CDH1}\)
promotes the differentiation of retinal progenitors by inducing G1 arrest and simultaneously suppressing cell responsiveness to Wnt signalling (Figure 2B).

Importantly, the APC/C-dependent regulation of Wnt signalling is likely conserved in vertebrates. The catalytic domain of Nek2 is highly conserved51. Human Nek2 is also an APC/C substrate52 and phosphorylates the human Dsh orthologue53. Furthermore, in *Xenopus* embryos, morpholino-mediated depletion of APC/C subunits inhibits axis elongation and neural tube closure and also randomises epidermal ciliary polarity, phenotypes which are commonly observed upon aberrant Wnt signalling activation54. Whether these Wnt-related phenotypes in *Xenopus* are mediated by Nek2 needs to be tested. It has been shown that Wnt signalling is regulated during the cell cycle in human cells; the kinase activity of GSK3, a canonical Wnt pathway component downstream of Dsh, is low in G1 and peaks in M phase, which reversely correlates with APC/C activity55. During mitosis, Wnt signalling promotes various mitotic processes such as the assembly and orientation of the mitotic spindle and chromosome segregation, through post-transcriptional regulation56,57. Notably, three Nek2 isoforms are expressed in human cells and are differentially targeted by APC/CCDC20 or APC/CCDH1 during the cell cycle48,58, suggesting that APC/C may differentially regulate multiple Wnt signalling cascades during the cell cycle through different Nek2 isoforms.

Regulating the centrosome

Centrosomes and the cilia are interrelated organelles that share centrioles as core structural components, and through microtubule organisation they regulate a wide range of cellular processes that are crucial for the development of multicellular organisms, including cell division, signal transduction and cell motility59 (Figure 3A). Accordingly, dysfunction of these organelles is tightly associated with various human diseases such as cancer, microcephaly and ciliopathy60.

In most cells, the copy number of centrioles is strictly controlled (one or two copies) so that centrioles are duplicated only once in a cell cycle by using pre-existing centrioles as templates, analogous to DNA replication. Additionally, centrioles can be converted to a basal body in G1/G0 phase to form the primary cillum. APC/C has emerged as a key
regulator that coordinates duplication and conversion processes of the centriole-based
organelles with cell cycle progression50 (Figure 3A, Table 1). During the cell cycle, APC/C
targets many structural components and important regulators of the centrosome, such as
Sas6, Aurora A and Polo-like kinase 1. The accumulation of any one of these components or
regulators results in centrosome overamplification or abnormal microtubule nucleation,
highlighting the importance of APC/C-mediated regulation58,61,62. Additionally, APC/CCDC20
degradates another NEK family member, Nek1, to disassemble primary cilia upon cell cycle
reentry63.

The tight coupling between the structure and function of the centrosome and the cell cycle
is likely to be critical for the normal development of metazoan organisms, including humans.
Indeed, there is a link between defects in APC/C-dependent destruction of a centrosome
component and a pathological developmental disorder. The gene encoding the centriole
component STIL has been identified as a causal gene of autosomal recessive primary
microcephaly (MCPH)64. Some known MCPH mutations in STIL, while maintaining its ability
to assemble functional centrosomes, block its APC/CCDH1-dependent degradation and cause
its stabilisation, thereby enhancing its ability to induce centrosome amplification in human
cells65. It has been shown that supernumerary centrosomes cause microcephaly in mice66.
Moreover, centrosomes conversely regulate the function of APC/C by regulating its activity
as a subcellular hub67,68. In Drosophila neuroblasts, centrosomal localisation of CDH1
promotes APC/C-dependent degradation of Aurora A at the centrosome, which is required
to maintain the neuroblast number in the developing adult brain69. In human neurons, the
centrosome-associated pool of CDC20 is required for APC/C to regulate dendrite
morphology36.

Centrosomes change their organisation and functions to promote cell differentiation and
adopt tissue-specific functions during development. Recent studies illustrate how the APC/C
impacts cell differentiation through its regulation of the centrosome in different
developmental settings (Figure 3B). During the early development of the Drosophila
tracheal system (the Drosophila respiratory system), post-mitotic terminal cells (TC cells)
undergo unique unicellular branching, which is initiated with subcellular lumen formation at
the apical cell membrane. It was found that during this process, centrosomes localise near
the apical membrane in TC cells and form a polarised microtubule network that is necessary
for lumen formation70. Abnormal APC/CCDH1 activation by mutations in Rca1 (*Drosophila* Emi1) induces centrosome amplification in TC cells and causes lumen bifurcation, leading to excessive TC cell branching70. Thus, APC/CCDH1 regulates the unicellular morphogenesis of TC cells by restricting centrosome amplification.

Another study revealed a critical role of APC/C in an unconventional mode of centriole biogenesis during mammalian brain development. During the terminal differentiation of mouse ependymal cells, a few hundred centrioles are generated to form motile cilia, which are subsequently required for the generation of the brain fluid stream. In this unique process, many centrioles are formed *de novo* at the deuterostome, the electron-dense subcellular structure unique to multiciliated cells71,72. Pharmacological inhibition of APC/C impedes the multiciliation process by inhibiting the detachment of new-born centrioles from the deuterostome and their migration to the apical membrane73. Additionally, APC/C inhibition also drives the postmitotic ependymal cells into mitosis73, suggesting that APC/C regulates the unique centriole amplification process while keeping the ependymal cell cells quiescent. Unlike most postmitotic cells, ependymal cells express the mitotic APC/C coactivator CDC2073. Although it is not clear whether CDH1 is co-expressed in epidermal cells, how APC/CCDC20 and APC/CCDH1 are differentially regulated to enable uncoupling of the centriole amplification cycle from the cell cycle is an area for further research.

Concluding remarks

Initial studies on APC/C in multicellular organisms revealed unanticipated postmitotic roles of APC/C in a subset of cell types, in particular, neurons6–8. Building on this discovery, recent studies have established the critical role of APC/C in regulating cell differentiation and cell type-specific functions in a wide variety of cell types by deploying diverse molecular mechanisms (Figure 4, Key Figure). Through these studies, several major advances in our understanding of the functions of APC/C, and cell cycle machineries, have been achieved. First, the role of APC/C is not limited to terminal differentiation or specialised functions of a small number of cell types. Instead, APC/C is involved in a wide range of differentiation processes in a large variety of cell types, including progenitors and stem cells. Second, APC/C deploys highly diverse mechanisms to influence cellular differentiation. APC/C targets not only cell type-specific transcriptional regulators but also components of more general
cellular machineries, such as signalling pathways and centriole-based organelles, which participate in a wide spectrum of developmental processes. This suggests that the function of APC/C goes beyond a single cell and can extend to intercellular, tissue-level processes, including cell-cell communication, tissue polarity and morphogenesis. Finally, with APC/C being a ubiquitin ligase, recent findings underscore the importance of ubiquitination in the regulation of cell differentiation. In line with this, growing numbers of UPP components have been identified as regulators of fate determination in various stem cells. The UPP may play a crucial role in differentiation by enabling a rapid change in the cellular proteome through proteolysis, or by expanding a repertoire of protein modifications for signal transduction.

Many questions remain to be addressed as to the role of APC/C, thus cell cycle regulators, in metazoan development (see Outstanding Questions). An immediate question is how the multiple functions of APC/C are regulated in vivo by upstream developmental mechanisms. Several signalling pathways, including Notch and TGF-β, are suggested to transcriptionally or post-translationally regulate the APC/C. Additionally, spatial changes in subcellular localisation may further regulate APC/C activity inside each cell. A more fundamental question is that of the biological significance of the multitude of functions APC/C has as a single macromolecule. A common theme emerging from recent evidence is that APC/C promotes cell differentiation by employing various cellular machineries to regulate context-dependent differentiation processes while inducing or maintaining G1/G0 arrest in the same cell (Figure 4). It is tempting to speculate that there is an intrinsic importance and/or an evolutionary advantage to tightly couple these differentiation processes to the G1 or G0 state. For instance, such coupling may allow a sub-fraction of proliferating cells to respond differentially to the same signal depending on their cell cycle phase. Alternatively, the coupling may contribute to tumour suppression by making quiescent or differentiated cells resistant to mitogenic signals. Lastly, do cell cycle regulators have cell cycle-independent functions that are linked to cancer and other human diseases? The APC/C subunit, CDC27, was identified as a cancer driver gene in multiple human cancers. CDH1 heterozygous mice are prone to sporadic tumours. So far, the role of these genetic alterations in cancer development has been considered solely from the perspectives of cell-cycle functions of
APC/C. However, it is conceivable that cell cycle-independent functions of APC/C may contribute to the disease mechanism.

To address these questions, it is crucial to continue exploring the function of APC/C and other cell cycle regulators in a wider variety of developmental contexts. In the past, the biggest challenge in studying the function of cell cycle regulators in vivo was their core functions, being essential for cell growth and viability. However, the recent advent of powerful genome editing methods, single-cell analysis technologies, and potent inhibitors that are highly specific to each cell cycle regulator protein enables precise manipulation and dissection of the functions of cell cycle regulators in vivo. We can therefore confidently envisage rapid advances in the characterisation of the functions of cell cycle regulators in the coming years.

Acknowledgement

YK thanks Christopher Antos, Alexis Braun, James Duboff, William Harris and Hiroyuki Yamano for critical reading, and Dr Jingyan Fu and Nan Pang for the EM image of a centriole. This work is supported by the start-up funding from ShanghaiTech University (2018F0202-000-06) and Cancer Research UK (CRUK-A12874) to YK. YK apologises to colleagues whose studies could not be cited due to space limitation.
References

20. Academy, N., Academy, N. & States, U. Kinetic Analysis of Regulatory Events in G1 Leading to Proliferation or Quiescence of Swiss 3T3 Cells Author (s): A. Zetterberg and Olle Larsson Source: Proceedings of the National Academy of Sciences of the United States of America, Published by: N. 82, 5365–5369 (2016).

Stegmüller, J. *et al.* Cell-Intrinsic Regulation of Axonal Morphogenesis by the

57. Stolz, A., Neufeld, K., Ertynch, N. & Bastians, H. Wnt-mediated protein

91. Drosopoulos, K., Tang, C., Chao, W. C. H. & Linardopoulos, S. APC/C is an

102. Liu, X. *et al.* The E3 ubiquitin ligase APC/C Cdh1 degrades MCPH1 after MCPH1-βTrCP2-Cdc25A-mediated mitotic entry to ensure neurogenesis.

113. Ke, P.-Y., Kuo, Y.-Y., Hu, C.-M. & Chang, Z.-F. Control of dTTP pool size by

Glossary

Cyclin-dependent kinases (CDKs): The family of enzymes composed of a kinase and a regulatory subunit, cyclin, including CDK1-Cyclin A/B, CDK2-Cyclin A/E, and CDK4/6-Cyclin D complexes. Typically, the cellular levels of cyclins oscillate during the cell cycle as the enzymatic activities of their associated kinases.

Cullin-RING ubiquitin ligases (CRLs): ubiquitin ligases are enzymes that catalyse the transfer of ubiquitin molecules onto their substrate proteins. CRLs are a family of multi-subunit ubiquitin ligases containing a Cullin-like protein and a RING finger protein as their catalytic centres, which include APC/C, SCF (Skp1-Cullin1-Fbox), VBC (pVHL-Elongin B/C-Cullin2), Cullin3-BTB and Cullin4 complexes.

Ubiquitin-proteasome pathway (UPP): The highly regulated molecular cascade that mediates targeted protein degradation in an ATP-dependent manner. In the UPP, three types of enzymes: ubiquitin activating enzymes (E1s), ubiquitin conjugating enzymes (E2s) and ubiquitin ligases (E3s), cooperate to covalently link polyubiquitin chains to lysine residues of target proteins. The polyubiquitinated proteins are then recognised by 26S proteasome, a large complex consisting of proteases and ATPase and non-ATPase subunits, and are degraded into small peptides. The highest level of regulation and specificity is conferred by E3s, which directly bind both substrates and E2s in specific spatiotemporal windows and catalyse ubiquitin transfer, and deubiquitinating enzymes (DUBs), a large group of proteases that cleave and modify ubiquitin chains.

Restriction point (R-point): the hypothetical time point in G1 phase where mammalian cells are considered to commit to the next round of the cell cycle. The cell that has passed R-point will initiate DNA replication without a delay whether critical amino acids or serums are withdrawn or not. Currently, the stable activation of the transcriptional activity of E2F is considered the defining event of R-point.

Retinoblastoma protein (pRb): the transcriptional repressor important for the regulation of the G1 to S phase transition as well as the exit from G0 phase. pRb directly binds E2F transcription factor to inhibit its transactivation activity. Upon phosphorylation by CDK4-
Cyclin D, pRb releases E2F, which in turn induces transcription of various cell cycle regulator genes including Cyclin E to initiate DNA replication.

Microcephaly: a medical condition characterised by a reduced brain size, which may be present at birth due to abnormal brain development or can develop after birth due to defective brain growth.

Planer cell polarity: The coordinated orientation of cells or cellular structures within the plane of an epithelial tissue. Prime examples are the epithelia of the *Drosophila* eyes and wings where photoreceptor cell clusters and wing hairs are oriented in certain directions across the tissues, which have been used as major model systems to study the mechanism regulating PCP.
Figure Legends

Figure 1 The function of APC/C in cell cycle regulation

(A) The most typical form of the cell cycle consists of four phases: G1, S, G2 and M phases. The cell replicates its genomic DNA in S phase and segregates each copy of their duplicated DNA equally into two daughter cells in M phase. G1 and G2 are preparatory phases before S and M phases and also the main periods during which cells grow. The cell can also exit from the cell cycle to enter ‘G0’ phase, where the cell has ceased mitotic division and stays in quiescence with unreplicated genome DNA. G0 phase can be reversible or irreversible. In the latter, the cell is often terminally differentiated (ex., neurons and muscle cells) or senescent (B) In dividing cells, CDC20 binds and activates APC/C in M phase to trigger chromatid separation and mitotic exit through degradation of Securin and mitotic cyclins, respectively. CDH1 then takes over APC/C during mitotic exit to keep cells in G1 phase or allow them to enter G0 through continuous degradation of cyclins and Skp2 (which degrades CDK inhibitors as a component of SCF ubiquitin ligase. APC/C^{CDC20} and APC/C^{CDH1} are thought to be mutually exclusive and the switch between the two forms is regulated by multiple posttranslational mechanisms, including dephosphorylation of APC/C core subunits and CDH1, and APC/C-dependent degradation of CDC20. However, precise kinetics of this transition and the possible interaction between the two forms of APC/C are unknown.

Figure 2 APC/C^{CDH1} modulates extracellular signalling pathways in G1/G0 cells.

The Wnt and TGF-β pathways are conserved extracellular signalling pathways that regulate diverse developmental and physiological processes including cell proliferation, differentiation, tissue homeostasis, cell polarity, axis formation and neural activity in multicellular organisms. (A) TGF-β signalling is induced by the binding of TGF-β superfamily ligands to a Type II receptor, which recruits and phosphorylates a Type I receptor. The Type I receptor then phosphorylates regulatory Smad proteins (R-Smads) to promote the formation of the R-Smads-co-Smad complex, which will be translocated into the nucleus to regulate target gene expression. (B) Wnt signalling initiates with the binding of Wnt family ligands to a Frizzled (Fz)-family transmembrane receptor, which passes the signal to the
Dishevelled protein in the cytoplasm. The canonical Wnt pathway leads to the stabilisation of β-catenin, which is translocated into the nucleus to induce transcriptional changes alongside the TCF/LEF family TFs. Wnt signalling can branch off into the noncanonical Wnt/PCP pathway that regulates cell polarity of epithelial tissues and some mesenchymal cells through cytoskeletal reorganisation. In G1 or G0 phase, APC/C^CDH1 regulates the cellular response to TGF-β and Wnt signals by degrading SnoN and Nek2 proteins, the negative and positive modulators of TGF-β and Wnt signalling, respectively.

Figure 3 APC/C regulates centriole-based organelles in mitotic and postmitotic cells.

(A) A pair of centrioles recruit a protein matrix called pericentriolar material (PCM) to form the centrosome, which acts as a major microtubule organising centre. In G1 phase, a cell normally contains two centrioles connected by a centrosomal linker. The centrioles duplicate in S phase, each forming a procentriole, and become mature centrosomes in G2 phase. As cells enter M phase, the centrosomes start to separate, recruit more PCM and nucleate microtubules to form mitotic spindle. Upon mitotic exit, the mother and daughter centrioles disengage. In many cells that have entered G0 phase, the mother centriole acts as a basal body to form a cilium, which disassembles upon cell cycle re-entry. APC/C ensures this coordination between the centriole behaviour and the cell cycle by targeting numerous regulatory proteins. The inset shows an electron microscopic cross-section image of a centriole in Drosophila testis. (B) APC/C regulates the formation and functions of centrosomes and cilia in postmitotic cells for cell differentiation. During the Drosophila tracheal development, Rca1 inhibits APC/C activity to limit centrosome number and prevent excess unicellular branching of the terminal cell (TC cell). In the differentiating mouse ependymal progenitor cell, APC/C regulates the unique mode of centriole amplification whilst keeping the cell in G0 phase, to enable the formation of multicilia.

Figure 4 A model for APC/C function in cell differentiation in multicellular organisms.

The cell cycle regulator APC/C can regulate various context-dependent mechanisms through ubiquitin-dependent proteolysis. By regulating these processes alongside the cell cycle, APC/C coordinates cell type-specific differentiation processes with elongation of G1 phase or G0 arrest to promote cellular differentiation. How the cell-cycle and cell cycle-
independent functions of APC/C are regulated during development remains poorly understood.

Table 1. Known APC/C substrates with cell cycle-independent functions

<table>
<thead>
<tr>
<th>Protein name</th>
<th>Function category</th>
<th>Function of degradation</th>
<th>Coactivator</th>
<th>Species**</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sas6</td>
<td>centriole biogenesis</td>
<td>centriole number restriction?</td>
<td>CDH1</td>
<td>M</td>
<td>62</td>
</tr>
<tr>
<td>STIL/SAS-5</td>
<td>centriole biogenesis</td>
<td>centriole number restriction?</td>
<td>CDH1</td>
<td>C, M</td>
<td>65,81</td>
</tr>
<tr>
<td>Spd2</td>
<td>PCM recruitment</td>
<td>N.D.</td>
<td>CDH1</td>
<td>D</td>
<td>69</td>
</tr>
<tr>
<td>Securin</td>
<td>cell cycle regulation, centriole biogenesis</td>
<td>chromatid separation, centriole disengagement</td>
<td>CDC20</td>
<td>Y, D, X, M</td>
<td>82-84</td>
</tr>
<tr>
<td>Plk1/Polo</td>
<td>centrosome regulation, mitotic progression</td>
<td>mitotic exit, centrosomal function undetermined</td>
<td>CDH1</td>
<td>Y, D, X, M</td>
<td>61,85</td>
</tr>
<tr>
<td>Aurora A</td>
<td>centrosome regulation, mitotic progression</td>
<td>N.D.</td>
<td>CDH1</td>
<td>D, X, M</td>
<td>86,87</td>
</tr>
<tr>
<td>Aurora B</td>
<td>chromatin regulation, cell cycle regulation</td>
<td>N.D.</td>
<td>CDH1</td>
<td>Y, D, X, M</td>
<td>88</td>
</tr>
<tr>
<td>CKAP2</td>
<td>centrosome and microtubule regulation</td>
<td>spindle formation, cytokinesis?</td>
<td>CDH1</td>
<td>M</td>
<td>89,90</td>
</tr>
<tr>
<td>Kif11/Eg5</td>
<td>centrosome and microtubule regulation</td>
<td>centrosome clustering</td>
<td>CDH1</td>
<td>M</td>
<td>91</td>
</tr>
<tr>
<td>Nek1</td>
<td>ciliogenesis</td>
<td>cilium resorption</td>
<td>CDC20</td>
<td>X, M</td>
<td>63</td>
</tr>
<tr>
<td>Nek2</td>
<td>centrosome and ciliogenesis, signal transduction</td>
<td>Wnt signalling suppression, PCP regulation, centrosomal function undetermined</td>
<td>*CDC20, CDH1</td>
<td>D, X, M</td>
<td>44,58</td>
</tr>
<tr>
<td>Radmis</td>
<td>microtubule regulation</td>
<td>neural progenitor proliferation?</td>
<td>N.D.</td>
<td>M</td>
<td>30</td>
</tr>
<tr>
<td>FOXM1</td>
<td>transcription, cell cycle control</td>
<td>cell cycle regulation of mitotic regulator genes</td>
<td>CDH1</td>
<td>M</td>
<td>92,93</td>
</tr>
<tr>
<td>HOXC10</td>
<td>transcription, development</td>
<td>N.D.</td>
<td>CDC20?</td>
<td>M</td>
<td>94</td>
</tr>
<tr>
<td>SIX1</td>
<td>transcription, development</td>
<td>N.D.</td>
<td>CDH1?</td>
<td>M</td>
<td>95</td>
</tr>
<tr>
<td>Ams2</td>
<td>transcription</td>
<td>cell cycle regulation of histone gene expression</td>
<td>CDH1</td>
<td>Y</td>
<td>96</td>
</tr>
<tr>
<td>Myf5</td>
<td>transcription, muscle development</td>
<td>muscle differentiation</td>
<td>CDH1</td>
<td>M</td>
<td>34</td>
</tr>
<tr>
<td>Duf</td>
<td>muscle development</td>
<td>myoblast fusion</td>
<td>CDH1</td>
<td>M</td>
<td>97</td>
</tr>
<tr>
<td>PAX3</td>
<td>Transcription, Melanocyte regulation</td>
<td>melanocyte differentiation</td>
<td>CDH1</td>
<td>M</td>
<td>98</td>
</tr>
<tr>
<td>NeuroD2</td>
<td>transcription, nervous system</td>
<td>presynaptic differentiation</td>
<td>CDC20</td>
<td>M</td>
<td>35</td>
</tr>
<tr>
<td>Id1</td>
<td>transcription, nervous system</td>
<td>dendrite growth</td>
<td>CDC20</td>
<td>M</td>
<td>36</td>
</tr>
<tr>
<td>Id2</td>
<td>transcription, nervous system</td>
<td>axonal growth</td>
<td>CDH1</td>
<td>M</td>
<td>37</td>
</tr>
<tr>
<td>SMAR1</td>
<td>tumour suppression</td>
<td>cell migration, invasion</td>
<td>CDC20</td>
<td>M</td>
<td>99</td>
</tr>
<tr>
<td>BRAF</td>
<td>signal transduction</td>
<td>tumour suppression</td>
<td>CDH1</td>
<td>M</td>
<td>100</td>
</tr>
<tr>
<td>CK18</td>
<td>signal transduction</td>
<td>neurite outgrowth regulation</td>
<td>CDH1</td>
<td>M</td>
<td>101</td>
</tr>
<tr>
<td>SnoN</td>
<td>signal transduction</td>
<td>TGF-β signalling activation, axonal growth, lens differentiation</td>
<td>CDH1</td>
<td>D, M</td>
<td>33,38,39</td>
</tr>
<tr>
<td>MCPH1</td>
<td>DNA repair, cell cycle control</td>
<td>neural progenitor differentiation</td>
<td>CDH1</td>
<td>D, M</td>
<td>102,103</td>
</tr>
<tr>
<td>Liprin α</td>
<td>nervous system</td>
<td>synapse bouton number restriction</td>
<td>N.D.</td>
<td>D</td>
<td>104</td>
</tr>
<tr>
<td>AMPA receptor</td>
<td>nervous system</td>
<td>glutamatic receptor recycling, synaptic activity regulation</td>
<td>CDH1</td>
<td>C, M</td>
<td>105,106</td>
</tr>
<tr>
<td>Gene</td>
<td>Function 1</td>
<td>Function 2</td>
<td>Species 1</td>
<td>Species 2</td>
<td>Species 3</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>Fas2</td>
<td>cell migration, nervous system</td>
<td>neuron-glia interaction</td>
<td>CDH1</td>
<td>D</td>
<td>107</td>
</tr>
<tr>
<td>Dlc90F</td>
<td>cell migration, eye development</td>
<td>neuron-glia interaction</td>
<td>CDH1</td>
<td>D</td>
<td>108</td>
</tr>
<tr>
<td>Drp1</td>
<td>mitochondria regulation</td>
<td>mitochondrial fusion</td>
<td>CDH1</td>
<td>M</td>
<td>109</td>
</tr>
<tr>
<td>PFKFB3</td>
<td>glycolysis</td>
<td>glycolysis inhibition</td>
<td>CDH1</td>
<td>M</td>
<td>110,111</td>
</tr>
<tr>
<td>GLS1</td>
<td>glutaminolysis</td>
<td>glutaminolysis inhibition</td>
<td>CDH1</td>
<td>M</td>
<td>112</td>
</tr>
<tr>
<td>TK1</td>
<td>dTTP production</td>
<td>dNTP pool maintenance</td>
<td>CDH1</td>
<td>M</td>
<td>113</td>
</tr>
<tr>
<td>SPOP</td>
<td>protein degradation</td>
<td>N.D.</td>
<td>CDH1</td>
<td>M</td>
<td>114</td>
</tr>
</tbody>
</table>

Abbreviations: N.D.: Not determined; M: Mammals; D: Drosophila melanogaster C: Caenorhabditis elegans; X: Xenopus; Y: Yeast
(A) TGF-β pathways

- **TGFβ**
- Type I receptor
- Type II receptor
- P
- Smad2
- Smad3
- Smad4
- P
- R-Smads
- Co-Smad
- Smad4
- SnoN
- NEK2
- APC/C

Degradation

- CDH1
- Dsh

Transcription

- Nucleus
- Cytoplasm

(B) Wnt pathways

- **Wnt**
- Co-receptor
- Fz
- Dsh
- P
- NEK2
- β-catenin
- TCF

Degradation

- Canonical Wnt pathway
- Wnt/PCP pathway

Cytoskeletal remodeling

- G1/G0 cell
- Plasma membrane
- Cytoplasm
- Nucleus
A

Cell cycle

- **G1**
 - Centrosome disengagement
 - Centriole disengagement
 - Centriole duplication
 - Basal body (mother centriole)
 - Mother centriole
 - Daughter centriole
 - Cilium formation
 - Cilium disassembly
 - NEK1

- **G2**
 - Spindle formation
 - Centrosome maturation
 - Pericentriolar material

- **M**
 - Centrosome separation
 - Microtubules
 - Centrosomal linker
 - NEK2

- **S**
 - CDK1 - CycB
 - AurA

Drosophila tracheal development

- **G0**
 - APC/C substrates

Mouse brain development

- **G0**
 - Basal body (mother centriole)
 - Motile cilia
 - Apical migration
Cell cycle regulator

Signalling
TFs
Transcription regulators
Chromatin modifiers
Organelles
miRNAs

Transcription
Posttranscriptional regulation

APC/C

Cell cycle-regulated proteins

bHLH TFs, ID proteins
Signalling modulators
Centriole-based organelles

Context-dependent differentiation mechanisms

Cell cycle regulation

G1 extension
G0 arrest

Cell cycle-independent functions

Cell differentiation
Highlights

- The cell cycle regulator APC/C regulates cell differentiation through cell cycle-independent functions in multicellular organisms.
- APC/C regulates a wide range of differentiation processes, from cell fate specification in unspecified progenitor cells to terminal differentiation of specific cell types, via ubiquitin-dependent proteolysis.
- APC/C influences cell differentiation by exerting at least three types of context-dependent mechanisms: (1) regulating the expression levels of cell type-specific transcriptional regulators, (2) modulating cellular responses to signalling pathways, (3) regulating the organisation and functions of centrosomes.
- APC/C is able to spatiotemporally coordinate these context-dependent differentiation processes with G1/G0 progression in the same cell.